Hall Ticket Number:	
	Code No.: 13606 S
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (IT: CBCS) III-Semester Supplementary Examinations, May/June-2018	
Digital Electronics & Logic Design	
Time: 3, hours	Max. Marks: 70
Note: Answer ALL questions in	Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

1. Implement the function $F = (x_1 + x_2).x_3$ using logic gates.

- 2. Define SOP & POS. Write the equivalent SOP expression for F (x, y, z) = x y + xz + y z.
- 3. Define Multiplexer. Construct 4x1 multiplexer using 2x1 multiplexer.
- 4. Construct combinational circuit for a 2 bit multiplier.
- 5. Construct the circuit diagram of Gated D latch. Write the truth table and excitation table.
- 6. Define Counters and draw Johnson counter logic diagram.
- 7. List out the differences between asynchronous and synchronous sequential circuit.
- 8. Define propagation delay, setup time and Hold Time of Flip Flop.
- 9. Illustrate the primitive flow table with example.
- 10. Discuss the significance of hazard?

Part-B (
$$5 \times 10 = 50$$
 Marks)
(All bits carry equal marks)

- 11. a) Implement the function $f = (x_1 + x_2)(x_2 + \overline{x_3})$ using NOR gates.
 - b) Demonstrate by means of truth table the validity of the following identity x + yz = (x + y)(x + z)
- 12. a) Implement the following functions using PLA. $f_1(a, b, c) = \sum (0, 1, 2, 4)$ $f_2(a, b, c) = \sum (0, 5, 6, 7)$
 - b) Design logic circuit of 2-to-4 decoder and write the VHDL code for the same.
- 13. a) Design 3-bit up counter. Explain its operation with timing diagrams.
 - b) Discuss about decoding problems in asynchronous sequential circuit.
- 14. a) List out the differences between Mealy and Moore models.
 - b) Design a synchronous counter with the repeated binary sequence $0 \to 2 \to 4 \to 6 \to 8 \to 0$ using D flip flop.
- 15. a) Explain in detail steps for digital hardware modelling using CAD tools
 - b) Write notes on following terms:
 - i) Transition table ii) H
 - ii) Flow table
- 16. a) Simplify the following Boolean function using Karnaugh map. $f(a, b, c, d, e) = \sum (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$
 - b) Design Carry look ahead adder.
- 17. Answer any two of the following:
 - a) Compare Flip flops Vs Latches
 - b) Draw the logic diagram of ring counter. Explain its operation with timing diagram.
 - c) Draw the ASM chart for multiplying two 4 bit numbers. Explain its multiplication operation with numerical example.

യയയാ